summaryrefslogtreecommitdiffhomepage
path: root/training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST
diff options
context:
space:
mode:
authorJeff Heiges <jeff.heiges@colorado.edu>2025-03-05 17:05:31 -0700
committerJeff Heiges <jeff.heiges@colorado.edu>2025-03-05 17:05:31 -0700
commit501be5542844cae3af5680a69f1c1b0db17d111f (patch)
tree028a1c2d9482dcef9ee388055bf855129980606b /training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST
parent0fe7603b6e0cb48160cc94e4a01b5f351b3c964a (diff)
Added Adam env 2 results and fixed folder names
Diffstat (limited to 'training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST')
-rw-r--r--training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST29
1 files changed, 0 insertions, 29 deletions
diff --git a/training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST b/training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST
deleted file mode 100644
index c4faabb..0000000
--- a/training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-FashionMNIST: Epoch 1 - Avg Loss: 1.269764, Accuracy: 53.37%
-Test Set - Loss: 0.0008, Accuracy: 69.32%
-
-FashionMNIST: Epoch 2 - Avg Loss: 0.650261, Accuracy: 75.55%
-Test Set - Loss: 0.0006, Accuracy: 76.00%
-
-FashionMNIST: Epoch 3 - Avg Loss: 0.538035, Accuracy: 80.05%
-Test Set - Loss: 0.0005, Accuracy: 80.03%
-
-FashionMNIST: Epoch 4 - Avg Loss: 0.475396, Accuracy: 82.75%
-Test Set - Loss: 0.0005, Accuracy: 83.63%
-
-FashionMNIST: Epoch 5 - Avg Loss: 0.423538, Accuracy: 84.75%
-Test Set - Loss: 0.0004, Accuracy: 84.55%
-
-FashionMNIST: Epoch 6 - Avg Loss: 0.392266, Accuracy: 85.91%
-Test Set - Loss: 0.0004, Accuracy: 85.49%
-
-FashionMNIST: Epoch 7 - Avg Loss: 0.373056, Accuracy: 86.62%
-Test Set - Loss: 0.0004, Accuracy: 86.19%
-
-FashionMNIST: Epoch 8 - Avg Loss: 0.357183, Accuracy: 87.00%
-Test Set - Loss: 0.0004, Accuracy: 86.81%
-
-FashionMNIST: Epoch 9 - Avg Loss: 0.341907, Accuracy: 87.57%
-Test Set - Loss: 0.0004, Accuracy: 86.50%
-
-FashionMNIST: Epoch 10 - Avg Loss: 0.329416, Accuracy: 88.11%
-Test Set - Loss: 0.0004, Accuracy: 87.21%