From 0fe7603b6e0cb48160cc94e4a01b5f351b3c964a Mon Sep 17 00:00:00 2001 From: Jeff Heiges Date: Wed, 5 Mar 2025 17:01:38 -0700 Subject: Training results mentioned in article https://jgh.xyz/posts/mnist_compare/ --- training_results/env2/LBFGS/MNIST | 79 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 79 insertions(+) create mode 100644 training_results/env2/LBFGS/MNIST (limited to 'training_results/env2/LBFGS') diff --git a/training_results/env2/LBFGS/MNIST b/training_results/env2/LBFGS/MNIST new file mode 100644 index 0000000..e207e43 --- /dev/null +++ b/training_results/env2/LBFGS/MNIST @@ -0,0 +1,79 @@ +Epoch 1 [12800/60000] Loss: 0.138132 +Epoch 1 [25600/60000] Loss: 0.053634 +Epoch 1 [38400/60000] Loss: 0.109519 +Epoch 1 [51200/60000] Loss: 0.112465 +Epoch 1 - Avg Loss: 0.233671, Accuracy: 93.28% + +Test Set - Loss: 0.0001, Accuracy: 97.81% + +Epoch 2 [12800/60000] Loss: 0.035781 +Epoch 2 [25600/60000] Loss: 0.111646 +Epoch 2 [38400/60000] Loss: 0.061600 +Epoch 2 [51200/60000] Loss: 0.120859 +Epoch 2 - Avg Loss: 0.068596, Accuracy: 98.14% + +Test Set - Loss: 0.0001, Accuracy: 98.02% + +Epoch 3 [12800/60000] Loss: 0.129996 +Epoch 3 [25600/60000] Loss: 0.069445 +Epoch 3 [38400/60000] Loss: 0.048380 +Epoch 3 [51200/60000] Loss: 0.008683 +Epoch 3 - Avg Loss: 0.055740, Accuracy: 98.53% + +Test Set - Loss: 0.0001, Accuracy: 98.30% + +Epoch 4 [12800/60000] Loss: 0.037124 +Epoch 4 [25600/60000] Loss: 0.020253 +Epoch 4 [38400/60000] Loss: 0.004947 +Epoch 4 [51200/60000] Loss: 0.048934 +Epoch 4 - Avg Loss: 0.049770, Accuracy: 98.69% + +Test Set - Loss: 0.0001, Accuracy: 97.85% + +Epoch 5 [12800/60000] Loss: 0.076356 +Epoch 5 [25600/60000] Loss: 0.046568 +Epoch 5 [38400/60000] Loss: 0.005206 +Epoch 5 [51200/60000] Loss: 0.059664 +Epoch 5 - Avg Loss: 0.044495, Accuracy: 98.85% + +Test Set - Loss: 0.0000, Accuracy: 98.63% + +Epoch 6 [12800/60000] Loss: 0.019457 +Epoch 6 [25600/60000] Loss: 0.038143 +Epoch 6 [38400/60000] Loss: 0.029849 +Epoch 6 [51200/60000] Loss: 0.038908 +Epoch 6 - Avg Loss: 0.041883, Accuracy: 98.99% + +Test Set - Loss: 0.0000, Accuracy: 98.61% + +Epoch 7 [12800/60000] Loss: 0.092034 +Epoch 7 [25600/60000] Loss: 0.022129 +Epoch 7 [38400/60000] Loss: 0.007379 +Epoch 7 [51200/60000] Loss: 0.038874 +Epoch 7 - Avg Loss: 0.037710, Accuracy: 99.00% + +Test Set - Loss: 0.0000, Accuracy: 98.55% + +Epoch 8 [12800/60000] Loss: 0.020345 +Epoch 8 [25600/60000] Loss: 0.130997 +Epoch 8 [38400/60000] Loss: 0.068181 +Epoch 8 [51200/60000] Loss: 0.023851 +Epoch 8 - Avg Loss: 0.035365, Accuracy: 99.14% + +Test Set - Loss: 0.0000, Accuracy: 98.78% + +Epoch 9 [12800/60000] Loss: 0.037697 +Epoch 9 [25600/60000] Loss: 0.019145 +Epoch 9 [38400/60000] Loss: 0.021696 +Epoch 9 [51200/60000] Loss: 0.055509 +Epoch 9 - Avg Loss: 0.033720, Accuracy: 99.21% + +Test Set - Loss: 0.0000, Accuracy: 98.77% + +Epoch 10 [12800/60000] Loss: 0.015093 +Epoch 10 [25600/60000] Loss: 0.022246 +Epoch 10 [38400/60000] Loss: 0.013344 +Epoch 10 [51200/60000] Loss: 0.006589 +Epoch 10 - Avg Loss: 0.032315, Accuracy: 99.23% + +Test Set - Loss: 0.0000, Accuracy: 98.74% -- cgit v1.2.3