From 501be5542844cae3af5680a69f1c1b0db17d111f Mon Sep 17 00:00:00 2001
From: Jeff Heiges <jeff.heiges@colorado.edu>
Date: Wed, 5 Mar 2025 17:05:31 -0700
Subject: Added Adam env 2 results and fixed folder names

---
 training_results/env1/Adagrad_lr001/MNIST          | 29 ++++++++
 training_results/env1/Adagrad_lr01/MNIST           | 29 ++++++++
 training_results/env1/Adagrad_tr001/MNIST          | 29 --------
 training_results/env1/Adagrad_tr01/MNIST           | 29 --------
 training_results/env1/Adam_lr001/FashionMNIST      | 29 ++++++++
 training_results/env1/Adam_lr001/MNIST             |  0
 training_results/env1/Adam_lr01/MNIST              | 29 ++++++++
 training_results/env1/Adam_tr001/FashionMNIST      | 29 --------
 training_results/env1/Adam_tr001/MNIST             |  0
 training_results/env1/Adam_tr01/MNIST              | 29 --------
 training_results/env1/NAdam_lr001/MNIST            | 29 ++++++++
 training_results/env1/NAdam_lr002/MNIST            | 29 ++++++++
 training_results/env1/NAdam_tr001/MNIST            | 29 --------
 training_results/env1/NAdam_tr002/MNIST            | 29 --------
 .../env1/ReLU_and_MaxPool_lr001/FashionMNIST       | 29 ++++++++
 .../env1/ReLU_and_MaxPool_lr01/FashionMNIST        | 29 ++++++++
 training_results/env1/ReLU_and_MaxPool_lr01/MNIST  | 29 ++++++++
 .../env1/ReLU_and_MaxPool_tr001/FashionMNIST       | 29 --------
 .../env1/ReLU_and_MaxPool_tr01/FashionMNIST        | 29 --------
 training_results/env1/ReLU_and_MaxPool_tr01/MNIST  | 29 --------
 training_results/env1/ReLU_lr001/FashionMNIST      | 29 ++++++++
 training_results/env1/ReLU_lr001/MNIST             | 29 ++++++++
 training_results/env1/ReLU_lr01/FashionMNIST       | 29 ++++++++
 training_results/env1/ReLU_lr01/MNIST              | 29 ++++++++
 training_results/env1/ReLU_tr001/FashionMNIST      | 29 --------
 training_results/env1/ReLU_tr001/MNIST             | 29 --------
 training_results/env1/ReLU_tr01/FashionMNIST       | 29 --------
 training_results/env1/ReLU_tr01/MNIST              | 29 --------
 training_results/env2/Adam/MNIST                   | 79 ++++++++++++++++++++++
 29 files changed, 456 insertions(+), 377 deletions(-)
 create mode 100644 training_results/env1/Adagrad_lr001/MNIST
 create mode 100644 training_results/env1/Adagrad_lr01/MNIST
 delete mode 100644 training_results/env1/Adagrad_tr001/MNIST
 delete mode 100644 training_results/env1/Adagrad_tr01/MNIST
 create mode 100644 training_results/env1/Adam_lr001/FashionMNIST
 create mode 100644 training_results/env1/Adam_lr001/MNIST
 create mode 100644 training_results/env1/Adam_lr01/MNIST
 delete mode 100644 training_results/env1/Adam_tr001/FashionMNIST
 delete mode 100644 training_results/env1/Adam_tr001/MNIST
 delete mode 100644 training_results/env1/Adam_tr01/MNIST
 create mode 100644 training_results/env1/NAdam_lr001/MNIST
 create mode 100644 training_results/env1/NAdam_lr002/MNIST
 delete mode 100644 training_results/env1/NAdam_tr001/MNIST
 delete mode 100644 training_results/env1/NAdam_tr002/MNIST
 create mode 100644 training_results/env1/ReLU_and_MaxPool_lr001/FashionMNIST
 create mode 100644 training_results/env1/ReLU_and_MaxPool_lr01/FashionMNIST
 create mode 100644 training_results/env1/ReLU_and_MaxPool_lr01/MNIST
 delete mode 100644 training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST
 delete mode 100644 training_results/env1/ReLU_and_MaxPool_tr01/FashionMNIST
 delete mode 100644 training_results/env1/ReLU_and_MaxPool_tr01/MNIST
 create mode 100644 training_results/env1/ReLU_lr001/FashionMNIST
 create mode 100644 training_results/env1/ReLU_lr001/MNIST
 create mode 100644 training_results/env1/ReLU_lr01/FashionMNIST
 create mode 100644 training_results/env1/ReLU_lr01/MNIST
 delete mode 100644 training_results/env1/ReLU_tr001/FashionMNIST
 delete mode 100644 training_results/env1/ReLU_tr001/MNIST
 delete mode 100644 training_results/env1/ReLU_tr01/FashionMNIST
 delete mode 100644 training_results/env1/ReLU_tr01/MNIST
 create mode 100644 training_results/env2/Adam/MNIST

diff --git a/training_results/env1/Adagrad_lr001/MNIST b/training_results/env1/Adagrad_lr001/MNIST
new file mode 100644
index 0000000..83ec7df
--- /dev/null
+++ b/training_results/env1/Adagrad_lr001/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 0.622060, Accuracy: 83.91%
+Test Set - Loss: 0.0003, Accuracy: 90.16%
+
+MNIST: Epoch 2 - Avg Loss: 0.311773, Accuracy: 90.89%
+Test Set - Loss: 0.0003, Accuracy: 92.08%
+
+MNIST: Epoch 3 - Avg Loss: 0.262124, Accuracy: 92.30%
+Test Set - Loss: 0.0002, Accuracy: 93.47%
+
+MNIST: Epoch 4 - Avg Loss: 0.231953, Accuracy: 93.14%
+Test Set - Loss: 0.0002, Accuracy: 93.98%
+
+MNIST: Epoch 5 - Avg Loss: 0.210415, Accuracy: 93.78%
+Test Set - Loss: 0.0002, Accuracy: 94.49%
+
+MNIST: Epoch 6 - Avg Loss: 0.193878, Accuracy: 94.27%
+Test Set - Loss: 0.0002, Accuracy: 94.99%
+
+MNIST: Epoch 7 - Avg Loss: 0.180249, Accuracy: 94.65%
+Test Set - Loss: 0.0002, Accuracy: 95.23%
+
+MNIST: Epoch 8 - Avg Loss: 0.169277, Accuracy: 94.96%
+Test Set - Loss: 0.0001, Accuracy: 95.57%
+
+MNIST: Epoch 9 - Avg Loss: 0.159998, Accuracy: 95.23%
+Test Set - Loss: 0.0001, Accuracy: 95.87%
+
+MNIST: Epoch 10 - Avg Loss: 0.152065, Accuracy: 95.50%
+Test Set - Loss: 0.0001, Accuracy: 96.07%
diff --git a/training_results/env1/Adagrad_lr01/MNIST b/training_results/env1/Adagrad_lr01/MNIST
new file mode 100644
index 0000000..e55185d
--- /dev/null
+++ b/training_results/env1/Adagrad_lr01/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 0.196224, Accuracy: 93.66%
+Test Set - Loss: 0.0001, Accuracy: 97.94%
+
+MNIST: Epoch 2 - Avg Loss: 0.070521, Accuracy: 97.83%
+Test Set - Loss: 0.0001, Accuracy: 98.44%
+
+MNIST: Epoch 3 - Avg Loss: 0.054380, Accuracy: 98.31%
+Test Set - Loss: 0.0000, Accuracy: 98.61%
+
+MNIST: Epoch 4 - Avg Loss: 0.045776, Accuracy: 98.59%
+Test Set - Loss: 0.0000, Accuracy: 98.66%
+
+MNIST: Epoch 5 - Avg Loss: 0.039876, Accuracy: 98.75%
+Test Set - Loss: 0.0000, Accuracy: 98.60%
+
+MNIST: Epoch 6 - Avg Loss: 0.035867, Accuracy: 98.88%
+Test Set - Loss: 0.0000, Accuracy: 98.76%
+
+MNIST: Epoch 7 - Avg Loss: 0.032403, Accuracy: 98.97%
+Test Set - Loss: 0.0000, Accuracy: 98.81%
+
+MNIST: Epoch 8 - Avg Loss: 0.029815, Accuracy: 99.06%
+Test Set - Loss: 0.0000, Accuracy: 98.85%
+
+MNIST: Epoch 9 - Avg Loss: 0.027202, Accuracy: 99.17%
+Test Set - Loss: 0.0000, Accuracy: 98.89%
+
+MNIST: Epoch 10 - Avg Loss: 0.025255, Accuracy: 99.22%
+Test Set - Loss: 0.0000, Accuracy: 98.93%
diff --git a/training_results/env1/Adagrad_tr001/MNIST b/training_results/env1/Adagrad_tr001/MNIST
deleted file mode 100644
index 83ec7df..0000000
--- a/training_results/env1/Adagrad_tr001/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 0.622060, Accuracy: 83.91%
-Test Set - Loss: 0.0003, Accuracy: 90.16%
-
-MNIST: Epoch 2 - Avg Loss: 0.311773, Accuracy: 90.89%
-Test Set - Loss: 0.0003, Accuracy: 92.08%
-
-MNIST: Epoch 3 - Avg Loss: 0.262124, Accuracy: 92.30%
-Test Set - Loss: 0.0002, Accuracy: 93.47%
-
-MNIST: Epoch 4 - Avg Loss: 0.231953, Accuracy: 93.14%
-Test Set - Loss: 0.0002, Accuracy: 93.98%
-
-MNIST: Epoch 5 - Avg Loss: 0.210415, Accuracy: 93.78%
-Test Set - Loss: 0.0002, Accuracy: 94.49%
-
-MNIST: Epoch 6 - Avg Loss: 0.193878, Accuracy: 94.27%
-Test Set - Loss: 0.0002, Accuracy: 94.99%
-
-MNIST: Epoch 7 - Avg Loss: 0.180249, Accuracy: 94.65%
-Test Set - Loss: 0.0002, Accuracy: 95.23%
-
-MNIST: Epoch 8 - Avg Loss: 0.169277, Accuracy: 94.96%
-Test Set - Loss: 0.0001, Accuracy: 95.57%
-
-MNIST: Epoch 9 - Avg Loss: 0.159998, Accuracy: 95.23%
-Test Set - Loss: 0.0001, Accuracy: 95.87%
-
-MNIST: Epoch 10 - Avg Loss: 0.152065, Accuracy: 95.50%
-Test Set - Loss: 0.0001, Accuracy: 96.07%
diff --git a/training_results/env1/Adagrad_tr01/MNIST b/training_results/env1/Adagrad_tr01/MNIST
deleted file mode 100644
index e55185d..0000000
--- a/training_results/env1/Adagrad_tr01/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 0.196224, Accuracy: 93.66%
-Test Set - Loss: 0.0001, Accuracy: 97.94%
-
-MNIST: Epoch 2 - Avg Loss: 0.070521, Accuracy: 97.83%
-Test Set - Loss: 0.0001, Accuracy: 98.44%
-
-MNIST: Epoch 3 - Avg Loss: 0.054380, Accuracy: 98.31%
-Test Set - Loss: 0.0000, Accuracy: 98.61%
-
-MNIST: Epoch 4 - Avg Loss: 0.045776, Accuracy: 98.59%
-Test Set - Loss: 0.0000, Accuracy: 98.66%
-
-MNIST: Epoch 5 - Avg Loss: 0.039876, Accuracy: 98.75%
-Test Set - Loss: 0.0000, Accuracy: 98.60%
-
-MNIST: Epoch 6 - Avg Loss: 0.035867, Accuracy: 98.88%
-Test Set - Loss: 0.0000, Accuracy: 98.76%
-
-MNIST: Epoch 7 - Avg Loss: 0.032403, Accuracy: 98.97%
-Test Set - Loss: 0.0000, Accuracy: 98.81%
-
-MNIST: Epoch 8 - Avg Loss: 0.029815, Accuracy: 99.06%
-Test Set - Loss: 0.0000, Accuracy: 98.85%
-
-MNIST: Epoch 9 - Avg Loss: 0.027202, Accuracy: 99.17%
-Test Set - Loss: 0.0000, Accuracy: 98.89%
-
-MNIST: Epoch 10 - Avg Loss: 0.025255, Accuracy: 99.22%
-Test Set - Loss: 0.0000, Accuracy: 98.93%
diff --git a/training_results/env1/Adam_lr001/FashionMNIST b/training_results/env1/Adam_lr001/FashionMNIST
new file mode 100644
index 0000000..f6312b0
--- /dev/null
+++ b/training_results/env1/Adam_lr001/FashionMNIST
@@ -0,0 +1,29 @@
+FashionMNIST: Epoch 1 - Avg Loss: 0.566349, Accuracy: 79.38%
+Test Set - Loss: 0.0004, Accuracy: 84.45%
+
+FashionMNIST: Epoch 2 - Avg Loss: 0.366753, Accuracy: 86.74%
+Test Set - Loss: 0.0003, Accuracy: 87.65%
+
+FashionMNIST: Epoch 3 - Avg Loss: 0.317086, Accuracy: 88.42%
+Test Set - Loss: 0.0003, Accuracy: 88.62%
+
+FashionMNIST: Epoch 4 - Avg Loss: 0.291068, Accuracy: 89.23%
+Test Set - Loss: 0.0003, Accuracy: 88.46%
+
+FashionMNIST: Epoch 5 - Avg Loss: 0.265197, Accuracy: 90.19%
+Test Set - Loss: 0.0003, Accuracy: 89.16%
+
+FashionMNIST: Epoch 6 - Avg Loss: 0.249706, Accuracy: 90.68%
+Test Set - Loss: 0.0003, Accuracy: 89.36%
+
+FashionMNIST: Epoch 7 - Avg Loss: 0.235987, Accuracy: 91.27%
+Test Set - Loss: 0.0003, Accuracy: 89.66%
+
+FashionMNIST: Epoch 8 - Avg Loss: 0.219092, Accuracy: 91.76%
+Test Set - Loss: 0.0003, Accuracy: 89.26%
+
+FashionMNIST: Epoch 9 - Avg Loss: 0.207106, Accuracy: 92.19%
+Test Set - Loss: 0.0003, Accuracy: 90.35%
+
+FashionMNIST: Epoch 10 - Avg Loss: 0.195736, Accuracy: 92.54%
+Test Set - Loss: 0.0003, Accuracy: 89.90%
diff --git a/training_results/env1/Adam_lr001/MNIST b/training_results/env1/Adam_lr001/MNIST
new file mode 100644
index 0000000..e69de29
diff --git a/training_results/env1/Adam_lr01/MNIST b/training_results/env1/Adam_lr01/MNIST
new file mode 100644
index 0000000..6789adc
--- /dev/null
+++ b/training_results/env1/Adam_lr01/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 0.158263, Accuracy: 95.33%
+Test Set - Loss: 0.0001, Accuracy: 97.54%
+
+MNIST: Epoch 2 - Avg Loss: 0.096980, Accuracy: 97.41%
+Test Set - Loss: 0.0001, Accuracy: 97.16%
+
+MNIST: Epoch 3 - Avg Loss: 0.099102, Accuracy: 97.56%
+Test Set - Loss: 0.0001, Accuracy: 98.15%
+
+MNIST: Epoch 4 - Avg Loss: 0.095891, Accuracy: 97.81%
+Test Set - Loss: 0.0001, Accuracy: 98.05%
+
+MNIST: Epoch 5 - Avg Loss: 0.082777, Accuracy: 98.13%
+Test Set - Loss: 0.0001, Accuracy: 98.16%
+
+MNIST: Epoch 6 - Avg Loss: 0.083527, Accuracy: 98.19%
+Test Set - Loss: 0.0001, Accuracy: 97.30%
+
+MNIST: Epoch 7 - Avg Loss: 0.075480, Accuracy: 98.37%
+Test Set - Loss: 0.0001, Accuracy: 98.37%
+
+MNIST: Epoch 8 - Avg Loss: 0.092026, Accuracy: 98.14%
+Test Set - Loss: 0.0002, Accuracy: 97.04%
+
+MNIST: Epoch 9 - Avg Loss: 0.079112, Accuracy: 98.31%
+Test Set - Loss: 0.0001, Accuracy: 98.31%
+
+MNIST: Epoch 10 - Avg Loss: 0.079674, Accuracy: 98.45%
+Test Set - Loss: 0.0001, Accuracy: 98.05%
diff --git a/training_results/env1/Adam_tr001/FashionMNIST b/training_results/env1/Adam_tr001/FashionMNIST
deleted file mode 100644
index f6312b0..0000000
--- a/training_results/env1/Adam_tr001/FashionMNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-FashionMNIST: Epoch 1 - Avg Loss: 0.566349, Accuracy: 79.38%
-Test Set - Loss: 0.0004, Accuracy: 84.45%
-
-FashionMNIST: Epoch 2 - Avg Loss: 0.366753, Accuracy: 86.74%
-Test Set - Loss: 0.0003, Accuracy: 87.65%
-
-FashionMNIST: Epoch 3 - Avg Loss: 0.317086, Accuracy: 88.42%
-Test Set - Loss: 0.0003, Accuracy: 88.62%
-
-FashionMNIST: Epoch 4 - Avg Loss: 0.291068, Accuracy: 89.23%
-Test Set - Loss: 0.0003, Accuracy: 88.46%
-
-FashionMNIST: Epoch 5 - Avg Loss: 0.265197, Accuracy: 90.19%
-Test Set - Loss: 0.0003, Accuracy: 89.16%
-
-FashionMNIST: Epoch 6 - Avg Loss: 0.249706, Accuracy: 90.68%
-Test Set - Loss: 0.0003, Accuracy: 89.36%
-
-FashionMNIST: Epoch 7 - Avg Loss: 0.235987, Accuracy: 91.27%
-Test Set - Loss: 0.0003, Accuracy: 89.66%
-
-FashionMNIST: Epoch 8 - Avg Loss: 0.219092, Accuracy: 91.76%
-Test Set - Loss: 0.0003, Accuracy: 89.26%
-
-FashionMNIST: Epoch 9 - Avg Loss: 0.207106, Accuracy: 92.19%
-Test Set - Loss: 0.0003, Accuracy: 90.35%
-
-FashionMNIST: Epoch 10 - Avg Loss: 0.195736, Accuracy: 92.54%
-Test Set - Loss: 0.0003, Accuracy: 89.90%
diff --git a/training_results/env1/Adam_tr001/MNIST b/training_results/env1/Adam_tr001/MNIST
deleted file mode 100644
index e69de29..0000000
diff --git a/training_results/env1/Adam_tr01/MNIST b/training_results/env1/Adam_tr01/MNIST
deleted file mode 100644
index 6789adc..0000000
--- a/training_results/env1/Adam_tr01/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 0.158263, Accuracy: 95.33%
-Test Set - Loss: 0.0001, Accuracy: 97.54%
-
-MNIST: Epoch 2 - Avg Loss: 0.096980, Accuracy: 97.41%
-Test Set - Loss: 0.0001, Accuracy: 97.16%
-
-MNIST: Epoch 3 - Avg Loss: 0.099102, Accuracy: 97.56%
-Test Set - Loss: 0.0001, Accuracy: 98.15%
-
-MNIST: Epoch 4 - Avg Loss: 0.095891, Accuracy: 97.81%
-Test Set - Loss: 0.0001, Accuracy: 98.05%
-
-MNIST: Epoch 5 - Avg Loss: 0.082777, Accuracy: 98.13%
-Test Set - Loss: 0.0001, Accuracy: 98.16%
-
-MNIST: Epoch 6 - Avg Loss: 0.083527, Accuracy: 98.19%
-Test Set - Loss: 0.0001, Accuracy: 97.30%
-
-MNIST: Epoch 7 - Avg Loss: 0.075480, Accuracy: 98.37%
-Test Set - Loss: 0.0001, Accuracy: 98.37%
-
-MNIST: Epoch 8 - Avg Loss: 0.092026, Accuracy: 98.14%
-Test Set - Loss: 0.0002, Accuracy: 97.04%
-
-MNIST: Epoch 9 - Avg Loss: 0.079112, Accuracy: 98.31%
-Test Set - Loss: 0.0001, Accuracy: 98.31%
-
-MNIST: Epoch 10 - Avg Loss: 0.079674, Accuracy: 98.45%
-Test Set - Loss: 0.0001, Accuracy: 98.05%
diff --git a/training_results/env1/NAdam_lr001/MNIST b/training_results/env1/NAdam_lr001/MNIST
new file mode 100644
index 0000000..2e2f4b4
--- /dev/null
+++ b/training_results/env1/NAdam_lr001/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 0.218898, Accuracy: 93.39%
+Test Set - Loss: 0.0001, Accuracy: 97.38%
+
+MNIST: Epoch 2 - Avg Loss: 0.062066, Accuracy: 98.09%
+Test Set - Loss: 0.0001, Accuracy: 97.50%
+
+MNIST: Epoch 3 - Avg Loss: 0.043854, Accuracy: 98.60%
+Test Set - Loss: 0.0000, Accuracy: 98.73%
+
+MNIST: Epoch 4 - Avg Loss: 0.034842, Accuracy: 98.91%
+Test Set - Loss: 0.0000, Accuracy: 98.88%
+
+MNIST: Epoch 5 - Avg Loss: 0.028108, Accuracy: 99.09%
+Test Set - Loss: 0.0000, Accuracy: 98.96%
+
+MNIST: Epoch 6 - Avg Loss: 0.024074, Accuracy: 99.23%
+Test Set - Loss: 0.0000, Accuracy: 98.89%
+
+MNIST: Epoch 7 - Avg Loss: 0.020622, Accuracy: 99.30%
+Test Set - Loss: 0.0000, Accuracy: 98.91%
+
+MNIST: Epoch 8 - Avg Loss: 0.017064, Accuracy: 99.45%
+Test Set - Loss: 0.0000, Accuracy: 98.89%
+
+MNIST: Epoch 9 - Avg Loss: 0.015592, Accuracy: 99.47%
+Test Set - Loss: 0.0000, Accuracy: 98.86%
+
+MNIST: Epoch 10 - Avg Loss: 0.014128, Accuracy: 99.53%
+Test Set - Loss: 0.0000, Accuracy: 99.08%
diff --git a/training_results/env1/NAdam_lr002/MNIST b/training_results/env1/NAdam_lr002/MNIST
new file mode 100644
index 0000000..fd203c8
--- /dev/null
+++ b/training_results/env1/NAdam_lr002/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 0.160434, Accuracy: 95.00%
+Test Set - Loss: 0.0001, Accuracy: 98.29%
+
+MNIST: Epoch 2 - Avg Loss: 0.049701, Accuracy: 98.47%
+Test Set - Loss: 0.0000, Accuracy: 98.66%
+
+MNIST: Epoch 3 - Avg Loss: 0.037278, Accuracy: 98.83%
+Test Set - Loss: 0.0000, Accuracy: 98.51%
+
+MNIST: Epoch 4 - Avg Loss: 0.031198, Accuracy: 99.04%
+Test Set - Loss: 0.0000, Accuracy: 98.76%
+
+MNIST: Epoch 5 - Avg Loss: 0.026165, Accuracy: 99.18%
+Test Set - Loss: 0.0000, Accuracy: 98.88%
+
+MNIST: Epoch 6 - Avg Loss: 0.024116, Accuracy: 99.25%
+Test Set - Loss: 0.0000, Accuracy: 98.91%
+
+MNIST: Epoch 7 - Avg Loss: 0.020606, Accuracy: 99.33%
+Test Set - Loss: 0.0000, Accuracy: 98.86%
+
+MNIST: Epoch 8 - Avg Loss: 0.018274, Accuracy: 99.44%
+Test Set - Loss: 0.0000, Accuracy: 98.91%
+
+MNIST: Epoch 9 - Avg Loss: 0.018810, Accuracy: 99.46%
+Test Set - Loss: 0.0000, Accuracy: 99.01%
+
+MNIST: Epoch 10 - Avg Loss: 0.015997, Accuracy: 99.50%
+Test Set - Loss: 0.0000, Accuracy: 98.87%
diff --git a/training_results/env1/NAdam_tr001/MNIST b/training_results/env1/NAdam_tr001/MNIST
deleted file mode 100644
index 2e2f4b4..0000000
--- a/training_results/env1/NAdam_tr001/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 0.218898, Accuracy: 93.39%
-Test Set - Loss: 0.0001, Accuracy: 97.38%
-
-MNIST: Epoch 2 - Avg Loss: 0.062066, Accuracy: 98.09%
-Test Set - Loss: 0.0001, Accuracy: 97.50%
-
-MNIST: Epoch 3 - Avg Loss: 0.043854, Accuracy: 98.60%
-Test Set - Loss: 0.0000, Accuracy: 98.73%
-
-MNIST: Epoch 4 - Avg Loss: 0.034842, Accuracy: 98.91%
-Test Set - Loss: 0.0000, Accuracy: 98.88%
-
-MNIST: Epoch 5 - Avg Loss: 0.028108, Accuracy: 99.09%
-Test Set - Loss: 0.0000, Accuracy: 98.96%
-
-MNIST: Epoch 6 - Avg Loss: 0.024074, Accuracy: 99.23%
-Test Set - Loss: 0.0000, Accuracy: 98.89%
-
-MNIST: Epoch 7 - Avg Loss: 0.020622, Accuracy: 99.30%
-Test Set - Loss: 0.0000, Accuracy: 98.91%
-
-MNIST: Epoch 8 - Avg Loss: 0.017064, Accuracy: 99.45%
-Test Set - Loss: 0.0000, Accuracy: 98.89%
-
-MNIST: Epoch 9 - Avg Loss: 0.015592, Accuracy: 99.47%
-Test Set - Loss: 0.0000, Accuracy: 98.86%
-
-MNIST: Epoch 10 - Avg Loss: 0.014128, Accuracy: 99.53%
-Test Set - Loss: 0.0000, Accuracy: 99.08%
diff --git a/training_results/env1/NAdam_tr002/MNIST b/training_results/env1/NAdam_tr002/MNIST
deleted file mode 100644
index fd203c8..0000000
--- a/training_results/env1/NAdam_tr002/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 0.160434, Accuracy: 95.00%
-Test Set - Loss: 0.0001, Accuracy: 98.29%
-
-MNIST: Epoch 2 - Avg Loss: 0.049701, Accuracy: 98.47%
-Test Set - Loss: 0.0000, Accuracy: 98.66%
-
-MNIST: Epoch 3 - Avg Loss: 0.037278, Accuracy: 98.83%
-Test Set - Loss: 0.0000, Accuracy: 98.51%
-
-MNIST: Epoch 4 - Avg Loss: 0.031198, Accuracy: 99.04%
-Test Set - Loss: 0.0000, Accuracy: 98.76%
-
-MNIST: Epoch 5 - Avg Loss: 0.026165, Accuracy: 99.18%
-Test Set - Loss: 0.0000, Accuracy: 98.88%
-
-MNIST: Epoch 6 - Avg Loss: 0.024116, Accuracy: 99.25%
-Test Set - Loss: 0.0000, Accuracy: 98.91%
-
-MNIST: Epoch 7 - Avg Loss: 0.020606, Accuracy: 99.33%
-Test Set - Loss: 0.0000, Accuracy: 98.86%
-
-MNIST: Epoch 8 - Avg Loss: 0.018274, Accuracy: 99.44%
-Test Set - Loss: 0.0000, Accuracy: 98.91%
-
-MNIST: Epoch 9 - Avg Loss: 0.018810, Accuracy: 99.46%
-Test Set - Loss: 0.0000, Accuracy: 99.01%
-
-MNIST: Epoch 10 - Avg Loss: 0.015997, Accuracy: 99.50%
-Test Set - Loss: 0.0000, Accuracy: 98.87%
diff --git a/training_results/env1/ReLU_and_MaxPool_lr001/FashionMNIST b/training_results/env1/ReLU_and_MaxPool_lr001/FashionMNIST
new file mode 100644
index 0000000..c4faabb
--- /dev/null
+++ b/training_results/env1/ReLU_and_MaxPool_lr001/FashionMNIST
@@ -0,0 +1,29 @@
+FashionMNIST: Epoch 1 - Avg Loss: 1.269764, Accuracy: 53.37%
+Test Set - Loss: 0.0008, Accuracy: 69.32%
+
+FashionMNIST: Epoch 2 - Avg Loss: 0.650261, Accuracy: 75.55%
+Test Set - Loss: 0.0006, Accuracy: 76.00%
+
+FashionMNIST: Epoch 3 - Avg Loss: 0.538035, Accuracy: 80.05%
+Test Set - Loss: 0.0005, Accuracy: 80.03%
+
+FashionMNIST: Epoch 4 - Avg Loss: 0.475396, Accuracy: 82.75%
+Test Set - Loss: 0.0005, Accuracy: 83.63%
+
+FashionMNIST: Epoch 5 - Avg Loss: 0.423538, Accuracy: 84.75%
+Test Set - Loss: 0.0004, Accuracy: 84.55%
+
+FashionMNIST: Epoch 6 - Avg Loss: 0.392266, Accuracy: 85.91%
+Test Set - Loss: 0.0004, Accuracy: 85.49%
+
+FashionMNIST: Epoch 7 - Avg Loss: 0.373056, Accuracy: 86.62%
+Test Set - Loss: 0.0004, Accuracy: 86.19%
+
+FashionMNIST: Epoch 8 - Avg Loss: 0.357183, Accuracy: 87.00%
+Test Set - Loss: 0.0004, Accuracy: 86.81%
+
+FashionMNIST: Epoch 9 - Avg Loss: 0.341907, Accuracy: 87.57%
+Test Set - Loss: 0.0004, Accuracy: 86.50%
+
+FashionMNIST: Epoch 10 - Avg Loss: 0.329416, Accuracy: 88.11%
+Test Set - Loss: 0.0004, Accuracy: 87.21%
diff --git a/training_results/env1/ReLU_and_MaxPool_lr01/FashionMNIST b/training_results/env1/ReLU_and_MaxPool_lr01/FashionMNIST
new file mode 100644
index 0000000..da34bb9
--- /dev/null
+++ b/training_results/env1/ReLU_and_MaxPool_lr01/FashionMNIST
@@ -0,0 +1,29 @@
+FashionMNIST: Epoch 1 - Avg Loss: 0.667863, Accuracy: 75.25%
+Test Set - Loss: 0.0004, Accuracy: 84.99%
+
+FashionMNIST: Epoch 2 - Avg Loss: 0.371554, Accuracy: 86.36%
+Test Set - Loss: 0.0004, Accuracy: 86.15%
+
+FashionMNIST: Epoch 3 - Avg Loss: 0.312804, Accuracy: 88.56%
+Test Set - Loss: 0.0003, Accuracy: 87.54%
+
+FashionMNIST: Epoch 4 - Avg Loss: 0.282618, Accuracy: 89.51%
+Test Set - Loss: 0.0003, Accuracy: 88.09%
+
+FashionMNIST: Epoch 5 - Avg Loss: 0.261221, Accuracy: 90.27%
+Test Set - Loss: 0.0003, Accuracy: 89.01%
+
+FashionMNIST: Epoch 6 - Avg Loss: 0.244058, Accuracy: 90.91%
+Test Set - Loss: 0.0003, Accuracy: 89.38%
+
+FashionMNIST: Epoch 7 - Avg Loss: 0.232460, Accuracy: 91.37%
+Test Set - Loss: 0.0003, Accuracy: 89.06%
+
+FashionMNIST: Epoch 8 - Avg Loss: 0.220620, Accuracy: 91.66%
+Test Set - Loss: 0.0003, Accuracy: 89.24%
+
+FashionMNIST: Epoch 9 - Avg Loss: 0.212714, Accuracy: 92.06%
+Test Set - Loss: 0.0003, Accuracy: 89.30%
+
+FashionMNIST: Epoch 10 - Avg Loss: 0.203891, Accuracy: 92.35%
+Test Set - Loss: 0.0003, Accuracy: 90.45%
diff --git a/training_results/env1/ReLU_and_MaxPool_lr01/MNIST b/training_results/env1/ReLU_and_MaxPool_lr01/MNIST
new file mode 100644
index 0000000..bff64dd
--- /dev/null
+++ b/training_results/env1/ReLU_and_MaxPool_lr01/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 0.312942, Accuracy: 90.23%
+Test Set - Loss: 0.0001, Accuracy: 98.16%
+
+MNIST: Epoch 2 - Avg Loss: 0.063010, Accuracy: 98.01%
+Test Set - Loss: 0.0001, Accuracy: 97.98%
+
+MNIST: Epoch 3 - Avg Loss: 0.043627, Accuracy: 98.63%
+Test Set - Loss: 0.0000, Accuracy: 98.62%
+
+MNIST: Epoch 4 - Avg Loss: 0.035296, Accuracy: 98.90%
+Test Set - Loss: 0.0000, Accuracy: 98.77%
+
+MNIST: Epoch 5 - Avg Loss: 0.029064, Accuracy: 99.07%
+Test Set - Loss: 0.0000, Accuracy: 98.91%
+
+MNIST: Epoch 6 - Avg Loss: 0.023820, Accuracy: 99.22%
+Test Set - Loss: 0.0000, Accuracy: 98.68%
+
+MNIST: Epoch 7 - Avg Loss: 0.018958, Accuracy: 99.40%
+Test Set - Loss: 0.0000, Accuracy: 98.88%
+
+MNIST: Epoch 8 - Avg Loss: 0.016465, Accuracy: 99.45%
+Test Set - Loss: 0.0000, Accuracy: 99.03%
+
+MNIST: Epoch 9 - Avg Loss: 0.015039, Accuracy: 99.49%
+Test Set - Loss: 0.0000, Accuracy: 99.07%
+
+MNIST: Epoch 10 - Avg Loss: 0.012170, Accuracy: 99.61%
+Test Set - Loss: 0.0000, Accuracy: 99.02%
diff --git a/training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST b/training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST
deleted file mode 100644
index c4faabb..0000000
--- a/training_results/env1/ReLU_and_MaxPool_tr001/FashionMNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-FashionMNIST: Epoch 1 - Avg Loss: 1.269764, Accuracy: 53.37%
-Test Set - Loss: 0.0008, Accuracy: 69.32%
-
-FashionMNIST: Epoch 2 - Avg Loss: 0.650261, Accuracy: 75.55%
-Test Set - Loss: 0.0006, Accuracy: 76.00%
-
-FashionMNIST: Epoch 3 - Avg Loss: 0.538035, Accuracy: 80.05%
-Test Set - Loss: 0.0005, Accuracy: 80.03%
-
-FashionMNIST: Epoch 4 - Avg Loss: 0.475396, Accuracy: 82.75%
-Test Set - Loss: 0.0005, Accuracy: 83.63%
-
-FashionMNIST: Epoch 5 - Avg Loss: 0.423538, Accuracy: 84.75%
-Test Set - Loss: 0.0004, Accuracy: 84.55%
-
-FashionMNIST: Epoch 6 - Avg Loss: 0.392266, Accuracy: 85.91%
-Test Set - Loss: 0.0004, Accuracy: 85.49%
-
-FashionMNIST: Epoch 7 - Avg Loss: 0.373056, Accuracy: 86.62%
-Test Set - Loss: 0.0004, Accuracy: 86.19%
-
-FashionMNIST: Epoch 8 - Avg Loss: 0.357183, Accuracy: 87.00%
-Test Set - Loss: 0.0004, Accuracy: 86.81%
-
-FashionMNIST: Epoch 9 - Avg Loss: 0.341907, Accuracy: 87.57%
-Test Set - Loss: 0.0004, Accuracy: 86.50%
-
-FashionMNIST: Epoch 10 - Avg Loss: 0.329416, Accuracy: 88.11%
-Test Set - Loss: 0.0004, Accuracy: 87.21%
diff --git a/training_results/env1/ReLU_and_MaxPool_tr01/FashionMNIST b/training_results/env1/ReLU_and_MaxPool_tr01/FashionMNIST
deleted file mode 100644
index da34bb9..0000000
--- a/training_results/env1/ReLU_and_MaxPool_tr01/FashionMNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-FashionMNIST: Epoch 1 - Avg Loss: 0.667863, Accuracy: 75.25%
-Test Set - Loss: 0.0004, Accuracy: 84.99%
-
-FashionMNIST: Epoch 2 - Avg Loss: 0.371554, Accuracy: 86.36%
-Test Set - Loss: 0.0004, Accuracy: 86.15%
-
-FashionMNIST: Epoch 3 - Avg Loss: 0.312804, Accuracy: 88.56%
-Test Set - Loss: 0.0003, Accuracy: 87.54%
-
-FashionMNIST: Epoch 4 - Avg Loss: 0.282618, Accuracy: 89.51%
-Test Set - Loss: 0.0003, Accuracy: 88.09%
-
-FashionMNIST: Epoch 5 - Avg Loss: 0.261221, Accuracy: 90.27%
-Test Set - Loss: 0.0003, Accuracy: 89.01%
-
-FashionMNIST: Epoch 6 - Avg Loss: 0.244058, Accuracy: 90.91%
-Test Set - Loss: 0.0003, Accuracy: 89.38%
-
-FashionMNIST: Epoch 7 - Avg Loss: 0.232460, Accuracy: 91.37%
-Test Set - Loss: 0.0003, Accuracy: 89.06%
-
-FashionMNIST: Epoch 8 - Avg Loss: 0.220620, Accuracy: 91.66%
-Test Set - Loss: 0.0003, Accuracy: 89.24%
-
-FashionMNIST: Epoch 9 - Avg Loss: 0.212714, Accuracy: 92.06%
-Test Set - Loss: 0.0003, Accuracy: 89.30%
-
-FashionMNIST: Epoch 10 - Avg Loss: 0.203891, Accuracy: 92.35%
-Test Set - Loss: 0.0003, Accuracy: 90.45%
diff --git a/training_results/env1/ReLU_and_MaxPool_tr01/MNIST b/training_results/env1/ReLU_and_MaxPool_tr01/MNIST
deleted file mode 100644
index bff64dd..0000000
--- a/training_results/env1/ReLU_and_MaxPool_tr01/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 0.312942, Accuracy: 90.23%
-Test Set - Loss: 0.0001, Accuracy: 98.16%
-
-MNIST: Epoch 2 - Avg Loss: 0.063010, Accuracy: 98.01%
-Test Set - Loss: 0.0001, Accuracy: 97.98%
-
-MNIST: Epoch 3 - Avg Loss: 0.043627, Accuracy: 98.63%
-Test Set - Loss: 0.0000, Accuracy: 98.62%
-
-MNIST: Epoch 4 - Avg Loss: 0.035296, Accuracy: 98.90%
-Test Set - Loss: 0.0000, Accuracy: 98.77%
-
-MNIST: Epoch 5 - Avg Loss: 0.029064, Accuracy: 99.07%
-Test Set - Loss: 0.0000, Accuracy: 98.91%
-
-MNIST: Epoch 6 - Avg Loss: 0.023820, Accuracy: 99.22%
-Test Set - Loss: 0.0000, Accuracy: 98.68%
-
-MNIST: Epoch 7 - Avg Loss: 0.018958, Accuracy: 99.40%
-Test Set - Loss: 0.0000, Accuracy: 98.88%
-
-MNIST: Epoch 8 - Avg Loss: 0.016465, Accuracy: 99.45%
-Test Set - Loss: 0.0000, Accuracy: 99.03%
-
-MNIST: Epoch 9 - Avg Loss: 0.015039, Accuracy: 99.49%
-Test Set - Loss: 0.0000, Accuracy: 99.07%
-
-MNIST: Epoch 10 - Avg Loss: 0.012170, Accuracy: 99.61%
-Test Set - Loss: 0.0000, Accuracy: 99.02%
diff --git a/training_results/env1/ReLU_lr001/FashionMNIST b/training_results/env1/ReLU_lr001/FashionMNIST
new file mode 100644
index 0000000..f64566a
--- /dev/null
+++ b/training_results/env1/ReLU_lr001/FashionMNIST
@@ -0,0 +1,29 @@
+FashionMNIST: Epoch 1 - Avg Loss: 2.286776, Accuracy: 11.10%
+Test Set - Loss: 0.0023, Accuracy: 20.23%
+
+FashionMNIST: Epoch 2 - Avg Loss: 2.093157, Accuracy: 28.33%
+Test Set - Loss: 0.0017, Accuracy: 43.26%
+
+FashionMNIST: Epoch 3 - Avg Loss: 1.219165, Accuracy: 59.18%
+Test Set - Loss: 0.0010, Accuracy: 64.76%
+
+FashionMNIST: Epoch 4 - Avg Loss: 0.898229, Accuracy: 66.46%
+Test Set - Loss: 0.0009, Accuracy: 67.72%
+
+FashionMNIST: Epoch 5 - Avg Loss: 0.829833, Accuracy: 69.22%
+Test Set - Loss: 0.0008, Accuracy: 68.84%
+
+FashionMNIST: Epoch 6 - Avg Loss: 0.793659, Accuracy: 70.45%
+Test Set - Loss: 0.0008, Accuracy: 71.13%
+
+FashionMNIST: Epoch 7 - Avg Loss: 0.767977, Accuracy: 71.28%
+Test Set - Loss: 0.0008, Accuracy: 66.79%
+
+FashionMNIST: Epoch 8 - Avg Loss: 0.745336, Accuracy: 72.42%
+Test Set - Loss: 0.0008, Accuracy: 72.50%
+
+FashionMNIST: Epoch 9 - Avg Loss: 0.726640, Accuracy: 73.26%
+Test Set - Loss: 0.0008, Accuracy: 72.69%
+
+FashionMNIST: Epoch 10 - Avg Loss: 0.710800, Accuracy: 73.79%
+Test Set - Loss: 0.0007, Accuracy: 72.53%
diff --git a/training_results/env1/ReLU_lr001/MNIST b/training_results/env1/ReLU_lr001/MNIST
new file mode 100644
index 0000000..fa0b906
--- /dev/null
+++ b/training_results/env1/ReLU_lr001/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 2.301629, Accuracy: 12.35%
+Test Set - Loss: 0.0023, Accuracy: 13.35%
+
+MNIST: Epoch 2 - Avg Loss: 2.297156, Accuracy: 14.30%
+Test Set - Loss: 0.0023, Accuracy: 14.97%
+
+MNIST: Epoch 3 - Avg Loss: 2.290805, Accuracy: 19.35%
+Test Set - Loss: 0.0023, Accuracy: 26.36%
+
+MNIST: Epoch 4 - Avg Loss: 2.278976, Accuracy: 32.53%
+Test Set - Loss: 0.0023, Accuracy: 36.21%
+
+MNIST: Epoch 5 - Avg Loss: 2.247882, Accuracy: 37.81%
+Test Set - Loss: 0.0022, Accuracy: 38.21%
+
+MNIST: Epoch 6 - Avg Loss: 2.111991, Accuracy: 45.10%
+Test Set - Loss: 0.0019, Accuracy: 55.52%
+
+MNIST: Epoch 7 - Avg Loss: 1.385476, Accuracy: 68.85%
+Test Set - Loss: 0.0009, Accuracy: 78.59%
+
+MNIST: Epoch 8 - Avg Loss: 0.709682, Accuracy: 80.62%
+Test Set - Loss: 0.0006, Accuracy: 83.57%
+
+MNIST: Epoch 9 - Avg Loss: 0.551874, Accuracy: 84.08%
+Test Set - Loss: 0.0005, Accuracy: 85.80%
+
+MNIST: Epoch 10 - Avg Loss: 0.481764, Accuracy: 85.94%
+Test Set - Loss: 0.0004, Accuracy: 87.28%
diff --git a/training_results/env1/ReLU_lr01/FashionMNIST b/training_results/env1/ReLU_lr01/FashionMNIST
new file mode 100644
index 0000000..da02243
--- /dev/null
+++ b/training_results/env1/ReLU_lr01/FashionMNIST
@@ -0,0 +1,29 @@
+FashionMNIST: Epoch 1 - Avg Loss: 0.743093, Accuracy: 72.53%
+Test Set - Loss: 0.0005, Accuracy: 81.53%
+
+FashionMNIST: Epoch 2 - Avg Loss: 0.411287, Accuracy: 84.85%
+Test Set - Loss: 0.0004, Accuracy: 85.97%
+
+FashionMNIST: Epoch 3 - Avg Loss: 0.353779, Accuracy: 86.93%
+Test Set - Loss: 0.0004, Accuracy: 86.91%
+
+FashionMNIST: Epoch 4 - Avg Loss: 0.315969, Accuracy: 88.33%
+Test Set - Loss: 0.0004, Accuracy: 87.19%
+
+FashionMNIST: Epoch 5 - Avg Loss: 0.293813, Accuracy: 89.04%
+Test Set - Loss: 0.0003, Accuracy: 87.88%
+
+FashionMNIST: Epoch 6 - Avg Loss: 0.275946, Accuracy: 89.68%
+Test Set - Loss: 0.0003, Accuracy: 88.43%
+
+FashionMNIST: Epoch 7 - Avg Loss: 0.262246, Accuracy: 90.34%
+Test Set - Loss: 0.0003, Accuracy: 89.06%
+
+FashionMNIST: Epoch 8 - Avg Loss: 0.246963, Accuracy: 90.76%
+Test Set - Loss: 0.0003, Accuracy: 89.54%
+
+FashionMNIST: Epoch 9 - Avg Loss: 0.238650, Accuracy: 91.13%
+Test Set - Loss: 0.0003, Accuracy: 89.51%
+
+FashionMNIST: Epoch 10 - Avg Loss: 0.229345, Accuracy: 91.46%
+Test Set - Loss: 0.0003, Accuracy: 90.22%
diff --git a/training_results/env1/ReLU_lr01/MNIST b/training_results/env1/ReLU_lr01/MNIST
new file mode 100644
index 0000000..f586eff
--- /dev/null
+++ b/training_results/env1/ReLU_lr01/MNIST
@@ -0,0 +1,29 @@
+MNIST: Epoch 1 - Avg Loss: 0.426265, Accuracy: 87.01%
+Test Set - Loss: 0.0001, Accuracy: 96.91%
+
+MNIST: Epoch 2 - Avg Loss: 0.082446, Accuracy: 97.52%
+Test Set - Loss: 0.0001, Accuracy: 98.33%
+
+MNIST: Epoch 3 - Avg Loss: 0.054633, Accuracy: 98.32%
+Test Set - Loss: 0.0000, Accuracy: 98.62%
+
+MNIST: Epoch 4 - Avg Loss: 0.041592, Accuracy: 98.72%
+Test Set - Loss: 0.0000, Accuracy: 98.73%
+
+MNIST: Epoch 5 - Avg Loss: 0.035133, Accuracy: 98.88%
+Test Set - Loss: 0.0000, Accuracy: 98.81%
+
+MNIST: Epoch 6 - Avg Loss: 0.028988, Accuracy: 99.05%
+Test Set - Loss: 0.0000, Accuracy: 98.76%
+
+MNIST: Epoch 7 - Avg Loss: 0.025236, Accuracy: 99.16%
+Test Set - Loss: 0.0000, Accuracy: 98.58%
+
+MNIST: Epoch 8 - Avg Loss: 0.022040, Accuracy: 99.31%
+Test Set - Loss: 0.0000, Accuracy: 98.85%
+
+MNIST: Epoch 9 - Avg Loss: 0.019295, Accuracy: 99.39%
+Test Set - Loss: 0.0000, Accuracy: 98.94%
+
+MNIST: Epoch 10 - Avg Loss: 0.015332, Accuracy: 99.50%
+Test Set - Loss: 0.0000, Accuracy: 98.91%
diff --git a/training_results/env1/ReLU_tr001/FashionMNIST b/training_results/env1/ReLU_tr001/FashionMNIST
deleted file mode 100644
index f64566a..0000000
--- a/training_results/env1/ReLU_tr001/FashionMNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-FashionMNIST: Epoch 1 - Avg Loss: 2.286776, Accuracy: 11.10%
-Test Set - Loss: 0.0023, Accuracy: 20.23%
-
-FashionMNIST: Epoch 2 - Avg Loss: 2.093157, Accuracy: 28.33%
-Test Set - Loss: 0.0017, Accuracy: 43.26%
-
-FashionMNIST: Epoch 3 - Avg Loss: 1.219165, Accuracy: 59.18%
-Test Set - Loss: 0.0010, Accuracy: 64.76%
-
-FashionMNIST: Epoch 4 - Avg Loss: 0.898229, Accuracy: 66.46%
-Test Set - Loss: 0.0009, Accuracy: 67.72%
-
-FashionMNIST: Epoch 5 - Avg Loss: 0.829833, Accuracy: 69.22%
-Test Set - Loss: 0.0008, Accuracy: 68.84%
-
-FashionMNIST: Epoch 6 - Avg Loss: 0.793659, Accuracy: 70.45%
-Test Set - Loss: 0.0008, Accuracy: 71.13%
-
-FashionMNIST: Epoch 7 - Avg Loss: 0.767977, Accuracy: 71.28%
-Test Set - Loss: 0.0008, Accuracy: 66.79%
-
-FashionMNIST: Epoch 8 - Avg Loss: 0.745336, Accuracy: 72.42%
-Test Set - Loss: 0.0008, Accuracy: 72.50%
-
-FashionMNIST: Epoch 9 - Avg Loss: 0.726640, Accuracy: 73.26%
-Test Set - Loss: 0.0008, Accuracy: 72.69%
-
-FashionMNIST: Epoch 10 - Avg Loss: 0.710800, Accuracy: 73.79%
-Test Set - Loss: 0.0007, Accuracy: 72.53%
diff --git a/training_results/env1/ReLU_tr001/MNIST b/training_results/env1/ReLU_tr001/MNIST
deleted file mode 100644
index fa0b906..0000000
--- a/training_results/env1/ReLU_tr001/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 2.301629, Accuracy: 12.35%
-Test Set - Loss: 0.0023, Accuracy: 13.35%
-
-MNIST: Epoch 2 - Avg Loss: 2.297156, Accuracy: 14.30%
-Test Set - Loss: 0.0023, Accuracy: 14.97%
-
-MNIST: Epoch 3 - Avg Loss: 2.290805, Accuracy: 19.35%
-Test Set - Loss: 0.0023, Accuracy: 26.36%
-
-MNIST: Epoch 4 - Avg Loss: 2.278976, Accuracy: 32.53%
-Test Set - Loss: 0.0023, Accuracy: 36.21%
-
-MNIST: Epoch 5 - Avg Loss: 2.247882, Accuracy: 37.81%
-Test Set - Loss: 0.0022, Accuracy: 38.21%
-
-MNIST: Epoch 6 - Avg Loss: 2.111991, Accuracy: 45.10%
-Test Set - Loss: 0.0019, Accuracy: 55.52%
-
-MNIST: Epoch 7 - Avg Loss: 1.385476, Accuracy: 68.85%
-Test Set - Loss: 0.0009, Accuracy: 78.59%
-
-MNIST: Epoch 8 - Avg Loss: 0.709682, Accuracy: 80.62%
-Test Set - Loss: 0.0006, Accuracy: 83.57%
-
-MNIST: Epoch 9 - Avg Loss: 0.551874, Accuracy: 84.08%
-Test Set - Loss: 0.0005, Accuracy: 85.80%
-
-MNIST: Epoch 10 - Avg Loss: 0.481764, Accuracy: 85.94%
-Test Set - Loss: 0.0004, Accuracy: 87.28%
diff --git a/training_results/env1/ReLU_tr01/FashionMNIST b/training_results/env1/ReLU_tr01/FashionMNIST
deleted file mode 100644
index da02243..0000000
--- a/training_results/env1/ReLU_tr01/FashionMNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-FashionMNIST: Epoch 1 - Avg Loss: 0.743093, Accuracy: 72.53%
-Test Set - Loss: 0.0005, Accuracy: 81.53%
-
-FashionMNIST: Epoch 2 - Avg Loss: 0.411287, Accuracy: 84.85%
-Test Set - Loss: 0.0004, Accuracy: 85.97%
-
-FashionMNIST: Epoch 3 - Avg Loss: 0.353779, Accuracy: 86.93%
-Test Set - Loss: 0.0004, Accuracy: 86.91%
-
-FashionMNIST: Epoch 4 - Avg Loss: 0.315969, Accuracy: 88.33%
-Test Set - Loss: 0.0004, Accuracy: 87.19%
-
-FashionMNIST: Epoch 5 - Avg Loss: 0.293813, Accuracy: 89.04%
-Test Set - Loss: 0.0003, Accuracy: 87.88%
-
-FashionMNIST: Epoch 6 - Avg Loss: 0.275946, Accuracy: 89.68%
-Test Set - Loss: 0.0003, Accuracy: 88.43%
-
-FashionMNIST: Epoch 7 - Avg Loss: 0.262246, Accuracy: 90.34%
-Test Set - Loss: 0.0003, Accuracy: 89.06%
-
-FashionMNIST: Epoch 8 - Avg Loss: 0.246963, Accuracy: 90.76%
-Test Set - Loss: 0.0003, Accuracy: 89.54%
-
-FashionMNIST: Epoch 9 - Avg Loss: 0.238650, Accuracy: 91.13%
-Test Set - Loss: 0.0003, Accuracy: 89.51%
-
-FashionMNIST: Epoch 10 - Avg Loss: 0.229345, Accuracy: 91.46%
-Test Set - Loss: 0.0003, Accuracy: 90.22%
diff --git a/training_results/env1/ReLU_tr01/MNIST b/training_results/env1/ReLU_tr01/MNIST
deleted file mode 100644
index f586eff..0000000
--- a/training_results/env1/ReLU_tr01/MNIST
+++ /dev/null
@@ -1,29 +0,0 @@
-MNIST: Epoch 1 - Avg Loss: 0.426265, Accuracy: 87.01%
-Test Set - Loss: 0.0001, Accuracy: 96.91%
-
-MNIST: Epoch 2 - Avg Loss: 0.082446, Accuracy: 97.52%
-Test Set - Loss: 0.0001, Accuracy: 98.33%
-
-MNIST: Epoch 3 - Avg Loss: 0.054633, Accuracy: 98.32%
-Test Set - Loss: 0.0000, Accuracy: 98.62%
-
-MNIST: Epoch 4 - Avg Loss: 0.041592, Accuracy: 98.72%
-Test Set - Loss: 0.0000, Accuracy: 98.73%
-
-MNIST: Epoch 5 - Avg Loss: 0.035133, Accuracy: 98.88%
-Test Set - Loss: 0.0000, Accuracy: 98.81%
-
-MNIST: Epoch 6 - Avg Loss: 0.028988, Accuracy: 99.05%
-Test Set - Loss: 0.0000, Accuracy: 98.76%
-
-MNIST: Epoch 7 - Avg Loss: 0.025236, Accuracy: 99.16%
-Test Set - Loss: 0.0000, Accuracy: 98.58%
-
-MNIST: Epoch 8 - Avg Loss: 0.022040, Accuracy: 99.31%
-Test Set - Loss: 0.0000, Accuracy: 98.85%
-
-MNIST: Epoch 9 - Avg Loss: 0.019295, Accuracy: 99.39%
-Test Set - Loss: 0.0000, Accuracy: 98.94%
-
-MNIST: Epoch 10 - Avg Loss: 0.015332, Accuracy: 99.50%
-Test Set - Loss: 0.0000, Accuracy: 98.91%
diff --git a/training_results/env2/Adam/MNIST b/training_results/env2/Adam/MNIST
new file mode 100644
index 0000000..f4b58cd
--- /dev/null
+++ b/training_results/env2/Adam/MNIST
@@ -0,0 +1,79 @@
+Epoch 1 [12800/60000] Loss: 0.136665
+Epoch 1 [25600/60000] Loss: 0.162167
+Epoch 1 [38400/60000] Loss: 0.060944
+Epoch 1 [51200/60000] Loss: 0.117724
+Epoch 1 - Avg Loss: 0.169864, Accuracy: 96.01%
+
+Test Set - Loss: 0.0001, Accuracy: 98.44%
+
+Epoch 2 [12800/60000] Loss: 0.092171
+Epoch 2 [25600/60000] Loss: 0.021338
+Epoch 2 [38400/60000] Loss: 0.094518
+Epoch 2 [51200/60000] Loss: 0.074454
+Epoch 2 - Avg Loss: 0.043798, Accuracy: 99.03%
+
+Test Set - Loss: 0.0000, Accuracy: 98.82%
+
+Epoch 3 [12800/60000] Loss: 0.088897
+Epoch 3 [25600/60000] Loss: 0.015518
+Epoch 3 [38400/60000] Loss: 0.030410
+Epoch 3 [51200/60000] Loss: 0.076697
+Epoch 3 - Avg Loss: 0.030009, Accuracy: 99.36%
+
+Test Set - Loss: 0.0000, Accuracy: 98.93%
+
+Epoch 4 [12800/60000] Loss: 0.008431
+Epoch 4 [25600/60000] Loss: 0.002401
+Epoch 4 [38400/60000] Loss: 0.014520
+Epoch 4 [51200/60000] Loss: 0.025814
+Epoch 4 - Avg Loss: 0.024399, Accuracy: 99.44%
+
+Test Set - Loss: 0.0000, Accuracy: 99.08%
+
+Epoch 5 [12800/60000] Loss: 0.000815
+Epoch 5 [25600/60000] Loss: 0.008576
+Epoch 5 [38400/60000] Loss: 0.003800
+Epoch 5 [51200/60000] Loss: 0.013346
+Epoch 5 - Avg Loss: 0.019088, Accuracy: 99.62%
+
+Test Set - Loss: 0.0000, Accuracy: 98.96%
+
+Epoch 6 [12800/60000] Loss: 0.038003
+Epoch 6 [25600/60000] Loss: 0.010052
+Epoch 6 [38400/60000] Loss: 0.004194
+Epoch 6 [51200/60000] Loss: 0.001696
+Epoch 6 - Avg Loss: 0.014721, Accuracy: 99.73%
+
+Test Set - Loss: 0.0000, Accuracy: 99.13%
+
+Epoch 7 [12800/60000] Loss: 0.007727
+Epoch 7 [25600/60000] Loss: 0.047644
+Epoch 7 [38400/60000] Loss: 0.000464
+Epoch 7 [51200/60000] Loss: 0.000607
+Epoch 7 - Avg Loss: 0.013894, Accuracy: 99.75%
+
+Test Set - Loss: 0.0000, Accuracy: 99.11%
+
+Epoch 8 [12800/60000] Loss: 0.001249
+Epoch 8 [25600/60000] Loss: 0.015864
+Epoch 8 [38400/60000] Loss: 0.012518
+Epoch 8 [51200/60000] Loss: 0.001050
+Epoch 8 - Avg Loss: 0.011323, Accuracy: 99.78%
+
+Test Set - Loss: 0.0000, Accuracy: 99.04%
+
+Epoch 9 [12800/60000] Loss: 0.000285
+Epoch 9 [25600/60000] Loss: 0.002247
+Epoch 9 [38400/60000] Loss: 0.001523
+Epoch 9 [51200/60000] Loss: 0.030761
+Epoch 9 - Avg Loss: 0.010586, Accuracy: 99.82%
+
+Test Set - Loss: 0.0000, Accuracy: 99.11%
+
+Epoch 10 [12800/60000] Loss: 0.000368
+Epoch 10 [25600/60000] Loss: 0.002828
+Epoch 10 [38400/60000] Loss: 0.006644
+Epoch 10 [51200/60000] Loss: 0.000153
+Epoch 10 - Avg Loss: 0.007253, Accuracy: 99.90%
+
+Test Set - Loss: 0.0000, Accuracy: 99.08%
-- 
cgit v1.2.3